CORRIGENDUM: Nanocrystalline ZnON; High mobility and low band gap semiconductor material for high performance switch transistor and image sensor application
نویسندگان
چکیده
Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3-10 cm(2)/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm(2)/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm(2) V(-1) s(-1), the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices.
منابع مشابه
Outlook for GaN HEMT Technology
It is expected that the high electron mobility transistor (HEMT) using gallium nitride (GaN) as its wide band gap semiconductor will be applied in diverse, green ICT systems because of its high efficiency. The GaN HEMT utilizes high-density two-dimensional electron gas (2DEG) accumulated in the boundary layer between GaN and AlGaN through their piezoelectric effect and natural polarization effe...
متن کاملLeveraging Contact Effects for Field-Effect Transistor Technologies with Reduced Complexity and Superior Current Uniformity
In order to achieve high performance, the design of devices for large-area electronics needs to be optimized despite material or fabrication shortcomings. In numerous emerging technologies thin-film transistor (TFT) performance is hindered by contact effects. Here, we show that contact effects can be used constructively to create devices with performance characteristics unachievable by conventi...
متن کاملStable electrical performance observed in large-scale monolayer WSe2(1-x)S2x with tunable band gap.
Two-dimensional (2D) semiconductor materials have attracted broad interest due to their unique structures and physical properties. The stability of the 2D-material-based devices plays a key role in their practical applications. Here, we report the promising stable electrical performance in the large-scale monolayer WSe2(1-x)S2x with a tunable band gap. Photoluminescence (PL) spectroscopy was ut...
متن کاملA Review of SOI Technology and its Applications
Substrate engineering [1] has enabled the industry to overcome many of the limitations encountered by traditional scaling. As a result, device architecture and engineered substrates have become strongly coupled, a coupling that is growing stronger as the IC industry moves to the 32 nm technology node and beyond. Substrate engineering started in earnest with the industry transition to SOI wafers...
متن کاملBit Swapping Linear Feedback Shift Register For Low Power Application Using 130nm Complementary Metal Oxide Semiconductor Technology (TECHNICAL NOTE)
Bit swapping linear feedback shift register (BS-LFSR) is employed in a conventional linear feedback shirt register (LFSR) to reduce its power dissipation and enhance its performance. In this paper, an enhanced BS-LFSR for low power application is proposed. To achieve low power dissipation, the proposed BS-LFSR introduced the stacking technique to reduce leakage current. In addition, three diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014